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Development and validation of portable,
field-deployable Ebola virus point-of-
encounter diagnostic assay for wildlife
surveillance
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Abstract: Early detection of Ebola virus spillover into wildlife is crucial for rapid response. We developed and
validated a portable, cold-chain independent Ebola virus RT-qPCR assay.

Methods: The field syringe-based RNA extraction method was compared with a conventional laboratory-based
spin-column RNA extraction method. Next, the qPCR efficiency and limit of detection of the assay was compared to
standard laboratory-based reagents and equipment. The specificity of the assay was confirmed by testing against
multiple Zaire Ebolavirus (EBOV) variants and other ebolavirus species. Lastly, swabs from an EBOV-infected non-
human primate carcass, stored at environmental conditions mimicking central and west Africa, were analyzed to
mimic in field conditions.

Results: The syringe-based RNA extraction method performed comparably to a standard laboratory spin-column-
based method. The developed assay was comparable in sensitivity and specificity to standard laboratory-based
diagnostic assays. The assay specifically detected EBOV and not any of the other tested ebolavirus species, including
Reston ebolavirus, Sudan ebolavirus, Bundibugyo ebolavirus, and Tai Forrest ebolavirus. Notably, the assays limit of
detection for EBOV isolates were all below 4 genome copies/μL. The assay was able to detect EBOV in oral, nasal,
thoracic cavity, and conjunctiva swabs obtained from an infected non-human primate.

Conclusion: We developed a field-based Ebolavirus assay which is comparable in sensitivity and specificity to
laboratory-based assays. Currently, the assay is being incorporated into wildlife carcass surveillance in the Republic
of the Congo and is being adapted for other infectious disease agents.
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Introduction
Since its discovery in 1976, there have been 17 recorded
Ebola virus (EBOV, species Zaire ebolavirus) outbreaks
affecting humans in west and central Africa [1]. EBOV
can cause mortality events in several wildlife species in-
cluding gorillas, chimpanzees, and duikers [2, 3]. EBOV
has been linked to severe population declines in the crit-
ically endangered western lowland gorilla (Gorilla gorilla
gorilla) [4–6]. Multiple EBOV zoonotic spillover events
during the 2001–2003 Gabon and Republic of Congo
(RoC) outbreaks resulted from direct contact with in-
fected gorilla, chimpanzee, and duiker carcasses [2].
Therefore, the ability to rapidly detect EBOV in wildlife
carcasses has the potential to limit human contact with
EBOV and prevent large-scale outbreaks. In addition,
early detection of mortality events due to EBOV in wild-
life could be used to limit further spread and aid in the
design of data-driven countermeasures (e.g. wildlife vac-
cination) [7].
Rapidly diagnosing wildlife EBOV mortality events is

hampered by a lack of diagnostic infrastructure in areas
at high risk for outbreaks [8, 9]. Previously, we reported
on the deployment of a mobile laboratory in Monrovia,
Liberia, using Roche LightCycler 480 RNA Master Hy-
drolysis Probes (LC480) (Roche, Indianapolis IN) paired
with a SmartCycler RT-qPCR instrument (Cepheid,
USA) during the west Africa Ebola virus disease out-
break [10]. Although this setup is highly portable, rela-
tively conventional laboratory infrastructure is still
required for sample handling, RNA extraction, and RT-
qPCR. Surveillance for EBOV in wildlife carcasses, par-
ticularly for high-risk species, would ideally be per-
formed in remote locations at the site of the wildlife
carcass, independent of a cold-chain, electric infrastruc-
ture or standard laboratory equipment.
Here we report on the development of an ultra-

portable (3.6 kg) point-of-encounter (PoE) assay to per-
form EBOV wildlife mortality surveillance at the site of
the carcass. The EBOV RT-qPCR assay uses the Bio-
meme Franklin Three9 real-time PCR thermocycler sys-
tem (BM) (Biomeme, USA), comprised of a syringe-
based extraction kit, RT-qPCR assay with thermostable
reagents and a highly portable, 9-well, 3-channel, RT-
qPCR instrument with a 6-h battery life.

Methods
RNA extraction
Virus was inactivated and RNA extracted following ap-
proved institutional protocols. Briefly, 140 μL of sample
was added to 560mL of AVL (Qiagen) and incubated at
room temperature (RT) for 10 min; this mixture was
then added to 560 μL of absolute ethanol. RNA was ex-
tracted using a QIAamp Viral RNA Mini Kit (Qiagen)
according to the manufacturer’s instructions. The

Biomeme M1 Sample Prep kit (M1) (Biomeme, USA)
employs a 5-min syringe-based RNA extraction protocol
and requires no electricity, cold-chain, or existing spe-
cialized laboratory equipment. Briefly, a sample prepar-
ation column is applied to a syringe and the sample is
then pulled into the column using the syringe followed
by a series of three wash and rinse buffers. The sample
is then dried on the column before elution in 500 μL of
elution buffer. The BM extraction was modified to in-
clude AVL and ethanol (Qiagen, USA) inactivation to
ensure complete inactivation of EBOV [11].

Real-time quantitative reverse-transcriptase PCR analysis
The RT-qPCRs in this manuscript were performed using
either the SmartCycler (Cepheid, USA) or the Biomeme
Franklin Three9 real-time PCR thermocycler system
(Biomeme, USA) using LC480 reagents (Roche, USA) or
BM lyophilized reagents. Both assays used the same
primers and probes targeting the EBOV L gene: forward
primer CAGCCAGCAATTTCTTCCAT, reverse primer
TTTTCGGTTGCTGTTTCTGTG, and two probes
FAM-ATCATTGGC/ZEN/RTACTGGAGGAGCAG-
3IABkFQ/ and FAM-TCATTGGCG/ZEN/TACTG-
GAGGAGCAGG-3IABkFQ. This assay was designed to
detect both West African and Central African EBOV lin-
eages [10], Performance of reagents and primer-probe
combinations were assessed between the LC480 reagents
and the RealStar Ebola virus RT-PCR kit (RealStar)
(Altona Diagnostics, Germany) on the BM instrument.
The RealStar kit was selected because of its World
Health Organization emergency use approval for EBOV
diagnostics. The RealStar kit also targets the L gene (pri-
mer and probe sequences are proprietary). For all RT-
qPCR reactions 5 μl of RNA sample was used in a total
of 25 μl reaction volume. Exact genome copies/mL of
each serially diluted sample was determined by Droplet
Digital Polymerase Chain Reaction (ddPCR; Hercules,
California, USA). All RT-qPCR tests were conducted in
triplicate. The limit of detection (LoD) was determined
as the genome copies/uL at which no virus was detected
in any of a sample’s replicates.

Viruses
BSL4 protocols, sample inactivation protocols, and
standard operating procedures for removal of specimens
from high containment were approved by the Institu-
tional Biosafety Committee (IBC). EBOV viruses: EBOV/
H.sapiens-tc/COD/1976/Mayinga-76 (EBOV/May),
EBOV/H.sapiens-tc/GAB/1994/Gabon (EBOV/Gab) and
EBOV/H.sapiens-tc/GUI/2014/Makona-C07 (EBOV/
Mak)), and filovirus species: Sudan virus (, Bundibugyo
virus, Tai Forest virus, Reston virus and Marburg virus
were used in this manuscript.
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Postmortem sampling of EBOV-infected non-human
primate
We studied a cynomolgus macaque included as control
in EBOV vaccine studies and euthanized because of
signs of Ebola Virus Disease and viremia. The animal
was infected with EBOV/H.sapiens-tc/COD/1976/

Mayinga-76. The animal carcass was maintained for 7
days at 27 °C and 60% relative humidity in environmen-
tal chamber (Caron, USA) to model the environmental
conditions observed in West and Central Africa. Oral,
nasal, thoracic cavity, and conjunctival swab samples
were obtained at 0, 4-, and 7-days post-euthanasia [11].

Fig. 1 Validation of the PoE platform and assay. a Comparison of the efficiency of extraction of Ebola virus stocks H.sapiens-tc/COD/1995/Kikwit-
15476 (EBOV/Kik) between the M1 Sample Prep or the Qiagen Viral RNA kit. The amount of RNA extracted by the two methods was not
statistically different (Mann-Whitney test p > 0.05). Displayed are the three individual replicates for each extraction including mean and standard
error of the mean. b Comparison of the Biomeme Franklin Three9 Real-Time PCR Thermocycler (BM) and the Smart Cycler using a ten-fold
dilution series of EBOV/Kik, extracted using the Biomeme M1 Sample Prep, and measured using Roche LightCycler 480 RNA Master Hydrolysis
Probes. c Comparison of the Biomeme lyophilized reagent system with the Roche LightCycler 480 RNA Master Hydrolysis Probes reagents and
the Altona RealStar Ebola virus RT-PCR kit. A ten-fold dilution series was analyzed using the three reagent systems on the BM. The results of each
individual replicate are depicted in the graphs. Genome copies/μL were calculated using a linear regression model derived from a tenfold
dilution series analyzed with Droplet Digital PCR
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All samples were extracted with the M1 kit and tested
on the BM platform and the laboratory-based system.

Statistical analyses
All statistical analyses were performed with GraphPad
Prism Ver. 7.0 (GraphPad Software, San Diego, CA).

Results
We compared the sample RNA extraction efficiency be-
tween the Biomeme M1 Sample Prep kit and the
QIAamp Viral RNA Mini Kit. No significant difference
was observed between the Qiagen RNA extraction
(1.826 × 107 ± 4.968 × 108 genome copies/mL, Mean ±
SEM) and the BM AVL adapted extraction (8.097 ×
108 ± 2.558 × 108 genome copies/mL Mean ± SEM) after
adjusting for the different elution buffer volumes (Qia-
gen 60uL and Biomeme 500uL; Mann-Whitney, p > 0.05;
Fig. 1a).
The qPCR efficiency and limit of detection (LoD) be-

tween instruments was evaluated by testing the LC480

reagents on both the BM and the SmartCycler (Fig. 1b).
The qPCR efficiencies did not differ significantly at
96.26 and 105.68% for the SmartCycler and BM, respect-
ively (ANCOVA, p > 0.05).
Next, the efficiency of the BM lyophilized reagents was

compared to the LC480 reagents and the RealStar Ebola
virus RT-PCR kit on the BM instrument (Fig. 1c). The
amplification efficiency of the LC480 reagents on the
BM instrument was 105.68%, efficiency of BM reagents
was 107.42% and efficiency of the RealStar reagents was
105.82%. No significant difference between the amplifi-
cation efficiencies were observed for any of the reagents
(one-way ANOVA, p > 0.05).
The sensitivity and efficiency of the PoE assay was de-

termined for EBOV strains from different outbreaks and
phylogenetic lineages (Table 1). No significant difference
was found between the amplification efficiencies of the
analyzed EBOV strains (one-way ANOVA, p > 0.05). The
sensitivity of the assay varied little between the strains,
with the theoretical LoD calculated with Droplet Digital

Table 1 Ebola virus (Zaire Ebolavirus) strain comparison

EBOV strain Amplification efficiency (%) Limit of detection (genome copies)

EBOV/H.sapiens-tc/COD/1995/Kikwit-15476 107.42% 2.9

EBOV/H.sapiens-tc/GAB/1994/Gabon 97.83% 3.1

EBOV/H.sapiens-tc/COD/1976/Mayinga-76 90.15% 3.8

EBOV/H.sapiens-tc/GUI/2014/Makona-C07 99.05% 1.6

Ebola virus stocks were extracted with the Biomeme M1 Sample Prep. All samples were tested in triplicate. Amplification efficiencies were calculated using the
straight-line portion of the regression curve. Limit of detection was calculated by absolute quantification with Droplet Digital PCR and probit analysis

Fig. 2 Analyses of carcass swabs from an EBOV-infected non-human primate. A non-human primate infected with H.sapiens-tc/GUI/2014/
Makona-C07 (EBOV/Mak) was euthanized after reaching end-point criteria. After euthanasia, the carcass was stored at 27 °C and 60% relative
humidity. Oral, nasal, thoracic cavity, and conjunctiva swabs were collected at 0-, 4-, and 7-days post euthanasia. All samples were extracted with
the Biomeme M1 Sample Prep. Cq values were measured using the EBOV PoE assay and laboratory-based assay using the Roche LightCycler 480
RNA Master Hydrolysis Probes on the Smart Cycler
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PCR (Bio-Rad, USA) and probit analysis ranging from
1.6 to 3.8 genome copies (Table 1). The specificity of the
assay for EBOV was evaluated against other ebolavirus
species, and all non-EBOV samples were negative with
the EBOV assay but positive with their own respective
primer and probe sets (primer and probe sequences
available upon request). These results indicate that the
developed assay is both sensitive and specific for all
tested variants of EBOV.
To evaluate the BM system on a realistic sample set,

we obtained samples from an EBOV Makona-infected
non-human primate carcass. After extraction, all sam-
ples were tested on the BM platform or the laboratory-
based system. All samples were EBOV-positive on both
assays (Fig. 2). The decrease in Ct values observed over
time has been previously observed [12]. We hypothesis
this is due to the breakdown of tissue and release of cel-
lular viral RNA. Finally, long-term stability of the lyophi-
lized PoE assay was determined. The reagents did not
lose functionality after storage for over 2 years at ambi-
ent temperature (22 °C).

Conclusion
Several EBOV outbreaks have been associated with dir-
ect contact with infected wildlife carcasses. We have
established a long-term wildlife-mortality-reporting net-
work in RoC specifically designed for rapid EBOV detec-
tion [13]. Previously, our networks relied exclusively on
sample analyses at the National Public Health laboratory
in Brazzaville, RoC or via outside partners, and obtaining
results could take anywhere from several days to
months. To drastically reduce the turnaround time, we
developed and validated an EBOV PoE assay. This PoE
assay using the BM system was validated against the
standard laboratory assay and RT-qPCR platforms and
demonstrated comparable performance (Fig. 3). The
assay had excellent specificity, and the LoD is well below
the range of EBOV viral loads expected in an identifiable
wildlife carcass [12, 14]. However, the data suggest that
the variability of the PoE assay is greater as it reaches its

LoD, indicating that this assay should not be used for
quantification but rather as a preliminary diagnostic tool.
The primary goal was to develop a PoE assay that could
be incorporated into a previously-established safe sam-
pling protocol and to perform rapid EBOV diagnostics
in the field at the site of the wildlife carcass [13]. This
assay will be deployed in the field in RoC to assess the
EBOV infection status of encountered wildlife carcasses.
Whereas the initial testing will be performed on-site,
sample results will be confirmed at the National Public
Health laboratory in Brazzaville. The inclusion of an
EBOV PoE assay greatly shortens the response time of
the early warning system in RoC, where both humans
and great apes are at risk for infection with EBOV. Fu-
ture studies are focused on adapting the PoE platform to
include other high consequence wildlife infectious dis-
eases, including those caused by Bacillus sp., Yersinia
pestis, and monkeypox virus [15].
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