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Abstract

Whole genome sequencing (WGS) of foodborne pathogens has become an effective method for investigating the
information contained in the genome sequence of bacterial pathogens. In addition, its highly discriminative power
enables the comparison of genetic relatedness between bacteria even on a sub-species level. For this reason, WGS is
being implemented worldwide and across sectors (human, veterinary, food, and environment) for the investigation of
disease outbreaks, source attribution, and improved risk characterization models. In order to extract relevant information
from the large quantity and complex data produced by WGS, a host of bioinformatics tools has been developed,
allowing users to analyze and interpret sequencing data, starting from simple gene-searches to complex phylogenetic
studies. Depending on the research question, the complexity of the dataset and their bioinformatics skill set, users can
choose between a great variety of tools for the analysis of WGS data. In this review, we describe the relevant approaches
for phylogenomic studies for outbreak studies and give an overview of selected tools for the characterization of
foodborne pathogens based on WGS data. Despite the efforts of the last years, harmonization and standardization of
typing tools are still urgently needed to allow for an easy comparison of data between laboratories, moving towards a
one health worldwide surveillance system for foodborne pathogens.
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Historical perspective on typing methods for
foodborne pathogens
Following the establishment of the germ theory of disease,
postulated by Louis Pasteur in the late 1850s, and ex-
tended by Robert Koch in the 1880s, major advances in
isolation and cultivation techniques of bacterial organism
were made, making it possible for microbiologists to
clearly differentiate bacteria from each other, even within
a species, thus pushing the development of prokaryote
taxonomy [1]. Initially, physiological, biochemical and
other phenotypic properties served as markers for species
identification. In the 1930s, serotyping was one of the first
approaches to differentiate bacteria based on antigen-
antibody reactions on a species and subspecies level. Later,
in the 1950s, phage typing schemes e.g. for Staphylococcus
spp., were developed to be even more discriminative [2].
From the beginning, these schemes were used to trace the
source of infections.

The discovery of nucleic acids, the postulation that gen-
etic information is embedded in the DNA, and the descrip-
tion of the structure of the DNA molecule by Watson and
Crick in the middle of the 1950s, formed the foundation of
the new field of Molecular Biology [3]. At the beginning of
the 1980s, Tenover and colleagues [4] developed the first
bacterial strain typing method based on nucleic acids as
marker molecules. It followed the discovery that the num-
ber and sizes of plasmids within different bacterial strains
vary considerably, and that therefore it is possible to use
plasmids naturally occurring in many genomes, to distin-
guish strains in an outbreak investigation. Although the
first DNA sequencing method (which made it possible to
determine the exact base pair sequence of a DNA frag-
ment) was developed by Maxam-Gilbert and Sanger as
early as 1977, it did not initially find broad application in
microbial typing. Instead, pulsed-field gel electrophoresis,
developed in the late 1980s, became the universal and
widely used gold standard method for bacterial strain typ-
ing for the following two decades [5]. During pulsed-field
gel electrophoresis, genomic DNA is fragmented with rare-
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cutting enzymes and the resulting size and number of
DNA fragments form a stable and reproducible restriction
pattern, which can be compared between different strains.
DNA sequencing remained a specialized and expensive
method until the late 1980s, when the polymerase chain
reaction was developed by Kary Mullis and Michael Smith
[6]. Using this method, a specific piece of DNA can be
exponentially amplified, before it is separated by size in an
electric field and visualized by intercalating dyes. The
polymerase chain reaction transformed the sequencing
process, significantly improving the applicability of Sanger-
sequencing in diagnostics. Since then, many sequence-
based typing approaches for the detection and typing of
foodborne pathogens have been developed. One of the
most successful sequence-based typing approaches is the
concept of multilocus sequence typing (MLST), initially
proposed for the pathogen Neisseria meningitidis in 1998
[7, 8]. Since then numerous MLST schemes were devel-
oped and are currently applied for hundreds of pathogens
(http://pubmlst.org). In general, MLST typing involves the
amplification of seven loci of housekeeping gene by PCR,
followed by DNA sequencing of the resulting PCR frag-
ments. Specific DNA sequences are then matched to allelic
profiles. A single nucleotide variation at any of these loci
defines a different allele and informs the sequence type
(ST). MLST detects changes at DNA level that cannot be
inferred from the phenotype, such as serotyping or multilo-
cus enzyme electrophoresis (MLEE). Multilocus sequencing
generates comparably small data files, which contain non-
ambiguous information and which can be easily shared
with other laboratories. Generally, the discriminatory
power of MLST is comparable or slightly better than trad-
itional serotyping [9]. Nevertheless, 7-gene MLST is often
not discriminative enough to be useful for outbreak detec-
tion. Because of this, the PCR-based typing method multi-
locus variable-number tandem-repeat analysis (MLVA)
was developed to discriminate between highly related
strains [10]. This approach is based on the detection of
repetitive tandem DNA units within various loci. Repeating
units occur of approximately 1–100 base pairs in length.
The number of tandem repeats can change by slipped
strand mispairing mechanism with each generation, mak-
ing it possible to infer relatedness of bacteria from the vari-
ation in the tandem repeat units. Because MLVA has been
proven in outbreak studies as a fast tracing tool with in-
creased resolution compared to pulsed field gel electro-
phoresis (PFGE), the method has been standardized for
certain pathogenic subtypes [11, 12].
The advance of WGS has provided new opportunities to

investigate the evolution of foodborne pathogens even
over short time periods [13, 14]. WGS provides unprece-
dented resolution in discriminating highly related strains.
Although PFGE and MLVA were milestones in bacterial
strain typing, they were not informative enough for certain

types of analysis, such as evolutionary studies and spatio-
temporal investigations. In contrast, WGS offers ultimate
resolution for surveillance and outbreak investigations,
source attribution, genomic studies, as well as genomic in-
formation for the prediction of phenotypes (serotyping,
antimicrobial resistance, biofilm formation, pathogenicity
and virulence). Many approaches and bioinformatics tools
have been developed to analyse and extract the relevant
genomic data. Here, we summarize the most important
and recent concepts for typing foodborne pathogens.

Phylogenomic analyses of foodborne pathogens
One of the great benefits of WGS lies in comparative
genomics, which allows the inference of the phylogenetic
relationship between a set of bacterial strains. This pro-
vides valuable information for the tracking of the out-
break source and for the identification of clonal strains.
In a first step, the similarity between different genomes

is estimated by different approaches further described in
Table 1. Subsequently this is followed by a clustering step
to infer phylogenetic relationships and clusters. Two
methods, gene-by-gene (also known as multi-locus se-
quence typing) and Single-Nucleotide Polymorphism
(SNP)-based approaches are commonly distinguished.
Both approaches have in common that a distance matrix
between a set of strains can be derived (see below for de-
tails), which allows the construction of a phylogenetic tree
via various clustering techniques (e.g. neighbor-joining
trees, minimum-spanning trees, hierarchical clustering).
Either approaches can be used to define cluster types and
cluster addresses: all samples within a specified distance
threshold belong to the same cluster type. A cluster ad-
dress e.g. SNP address [15], or Hierarchical Clustering of
core genome MLST (cgMLST) sequence types (HierCC)
[16] is the combination of cluster types with a set of differ-
ent distance thresholds. It provides a quick interpretation
of the degree of similarity of a set of samples related to an
outbreak, super-lineage or eBurst group.

cgMLST
To analyse the genetic similarity between genomes in a
species the initial 7-gene multi-locus sequence typing
approach has been upscaled to hundreds or thousands
of gene loci [8, 17]. Core genome MLST (cgMLST) is a
gene-by-gene approach which compares genomes using
a large number of gene loci. In practice, genome assem-
bly data is aligned to a scheme – a set of loci and a col-
lection of associated allele sequences. The allele calling
step yields either the allele number of an allele sequence
already present in a scheme or assigns a new allele num-
ber. As a result of cgMLST allele calling, each isolate is
characterized by its allele profile, i.e. the set of allele
numbers for each locus. The sum of differently assigned
allele numbers between a pair of samples determines the
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allele difference (either accounting for missing loci or
the absolute difference) and the cross-comparison of a
set of samples yields the allele distance matrix.
Finally, cgMLST analyses can be turned into a phyl-

ogeny via different strategies, e.g. single-linkage hier-
archical clustering, neighbor-joining (NJ) or minimum
spanning (MS) trees [18]. The choice of method depends
on the ancestral divergence (high divergence is better
reflected in NJ trees), computational considerations (MS
trees is less demanding) and presence of missing data.

cgMLST schemes
Central to the cgMLST approach is the definition of a
cgMLST scheme [17]. A given scheme consists of a de-
fined set of loci and a collection of alleles for each locus
which are typically numbered (allele numbers). A scheme
is created by collecting a large number of genomes of a
species and identifying the set of loci present in the major-
ity (frequently > 95%) of the genomes of a taxonomic

grouping [19, 20]. Schemes exist for various species
(Table 2). In some cases (e.g. Listeria monocytogenes) vari-
ous schemes exist for the same species. Although they
may lead to similar conclusions [21], and are likely to yield
phylogenetic trees with overall similar topology, cgMLST
sequence types derived from different schemes are not
directly comparable as they may contain different loci, loci
names, or other loci orders, etc. Even schemes with the
exact same locus definitions, but hosted on different ser-
vices (e.g. Enterobase and Ridom SeqShere+, compare
Fig. 1) are not comparable since the allocation of novel
allele numbers are not synchronized and the same allele
number relates to different allele sequences.

cgMLST vs wgMLST
Whole-genome MLST (wgMLST) can be viewed as an
extension to cgMLST which uses – in addition to a
set of core genome loci – also a set of accessory loci
[20, 22, 23].

Table 1 Phylogenetic approaches

Method Approach Reference Primary result Secondary result

cgMLST Alignment to scheme of
core genes

Set of allele sequences
for set of core genes

Allele distance matrix Minimum-spanning tree

wgMLST Alignment to scheme of
core and accessory genes

Set of allele sequences for set
of core and accessory genes

Allele distance matrix Minimum-spanning tree

SNP Mapping to reference Closely related reference
genome

Core SNP alignment,
SNP distance matrix

Neighbor-joining tree

Maximum- likelihood tree

split K-mer based
SNP detection

Pairwise K-mer comparison No reference Core SNP alignment,
SNP distance matrix

Neighbor-joining tree

MinHash Pairwise MinHash comparison
and clustering

No reference MinHash distances, clustering
information

Neighbor-joining tree

Table 2 Available cgMLST schemes

Provider Website Publically
accessible

Species

Enterobase http://enterobase.warwick.ac.uk/ Yes Salmonella, Escherichia/Shigella, Clostridioides, Vibrio, Yersinia, Helicobacter, Moraxella

Pasteur Institute https://bigsdb.pasteur.fr/ Yes Klebsiella pneumoniae/ quasipneumoniae/variicola, Listeria, Bordetella, Corynebacterium
diphtheriae, Yersinia, Leptospira Elizabethkingia anopheles/meningoseptica/miricola

Ridom https://cgMLST.org/ncs Yes Acinetobacter baumannii, Brucella melitensis, Clostridioides difficile, Enterococcus
faecalis, Enterococcus faecium, Escherichia coli, Francisella tularensis, Klebsiella
pneumoniae/variicola/quasipneumoniae, Legionella pneumophila, Listeria
monocytogenes, Mycobacterium tuberculosis/bovis/africanum/canettii,
Mycoplasma gallisepticum, Staphylococcus aureus

Applied Maths http://www.applied-maths.com/
applications/wgmlst

No Acinetobacter baumannii, Bacillus cereus, Bacillus subtilis, Burkholderia cepacia
complex, Brucella spp.

Campylobacter coli - C. jejuni, Citrobacter spp., Clostridium difficile, Cronobacter
spp., Enterobacter cloacae, Enterococcus faecalis, Enterococcus faecium, Enterococcus
raffinosus, Escherichia coli / Shigella, Francisella tularensis, Klebsiella aerogenes,
Klebsiella oxytoca, Klebsiella pneumoniae, Legionella pneumophila, Listeria
monocytogenes, Micrococcus spp., Mycobacterium bovis, Mycobacterium leprae,
Mycobacterium tuberculosis, Neisseria gonorrhoeae, Pseudomonas aeruginosa,
Salmonella enterica, Serratia marcescens, Staphylococcus aureus, Staphylococcus
epidermidis, Staphylococcus pseudointermedius, Streptococcus pyogenes

INNUENDO/
chewBBACA

http://chewbbaca.online/ Yes Acinetobacter calcoaceticus/baumannii complex, Legionella pneumophila, Streptococcus
pyogenes, Escherichia coli, Yersinia enterocolitica, Campylobacter jejuni, Salmonella
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In principle, wgMLST can provide a higher resolution
for closely linked clusters as the distance matrix is com-
puted on a larger set of loci. Nevertheless a number of
studies demonstrate that results derived from wgMLST
and cgMLST approaches are often quite similar. For ex-
ample, Pearce et al. [24] were able to demonstrate that
there was no statistically significant difference in the dis-
criminatory ability of cgMLST and wgMLST within a S.

enterica serovar Enteritidis outbreak. This was further
confirmed in a study analysing 145 S. enterica serovar
Heidelberg strains involved in four distinct outbreak
events [25]. Another study analyzing a diverse set of ~
200 Listeria monocytogenes strain found that when com-
paring phylogenetic trees derived from wgMLST and
cgMLST their topology were highly similar [26]. For the
practical application, one can envision a first cgMLST

Fig. 1 Wheel of tools and supported methods. Provided methods: Antimicrobial resistance gene detection (AMR), Virulence factor search
(Virulence), Serotyping and Phylogeny (highlighted in black/grey) by selected tools (BIGSdb, Bionumerics, CGE, COMPARE, PATRIC, EnteroBase,
INNUENDO, IRIDA, NCBI Pathogens, PathogenWatch and SeqSphere). Organisms for which a methodology is supported by a tool are specified.
For phylogeny, the underlying methods are mentioned. White fields indicate that functionality is not supported by the respective platform.
ML =Maximum Likelihood
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analysis on a diverse dataset of a species followed by
wgMLST for closely related (according to the cgMLST
results) strains.
Since cgMLST is a stable typing method for bacteria

within a species with many publically available schemes it
facilitates global foodborne outbreak investigation [19, 20].
However, to date no worldwide agreed centrally organized
allele nomenclature system exists. Assignment of allele
numbers to novel alleles is currently done on local or
systems with centrally curated nomenclature such as the
Enterobase service and others (see section below). Although
schemes can be shared, the sharing of analyses between dif-
ferent sites is impeded by the possibility to efficiently
synchronize novel alleles. Furthermore, cgMLST results de-
pend on the detailed trimming, assembly and alignment
strategy. In our experience, different approaches can cause
several allele differences (unpublished data).

SNP calling and choice of reference
Another approach is the identification of single nucleotide
polymorphisms (SNPs) that vary among strains. SNPs are
detected by mapping sequence reads against a closely re-
lated reference genome and recording nucleotide differ-
ences [27]. For a set of strains, only reference positions
that are covered by all query genomes are considered,
which form a set of core SNPs. All possible combinations
of pairwise SNP distances determine the SNP distance
matrix which allows fast and simple phylogenetic analysis
such as neighbor-joining trees. Moreover, the aligned core
SNPs form the basis for a more detailed evolutionary ana-
lysis – typically maximum likelihood phylogenetic trees
[28]. SNP-based analyses have been successfully applied in
resolving large national and international outbreaks [27,
29, 30]. The choice of a reference is crucial for reliable
SNP analyses [31]. Firstly, a high-quality, closed reference
genome permits calling SNP positions with higher accur-
acy than a non-curated draft genome containing many
contigs. Secondly, the reference is ideally closely related to
the set of strains under investigation. If it is too distant,
less reference positions will be covered and subsequently
less SNPs discovered. Likewise if the set of query genomes
contains one or more remotely linked isolates, the set of
core SNPs will be reduced. Strategies for obtaining a good
reference consist in choosing a genome from the same
serogroup, 7-gene MLST or MLST clonal complex [15].
Other approaches estimate the average distance of the
query genomes to a large set of potential reference ge-
nomes (https://gitlab.com/s.fuchs/refRank). Apart from
the choice of reference, a number of algorithms and pa-
rameters need to be defined for calling, quality assuring
and filtering SNPs [27, 32]. This can potentially hinder
standardization within and between laboratories [33, 34].
There is a variety of tools available for SNP calling,

such as SAMtools [35], GATK [36] and Freebayes [37].

Furthermore there are specialized pipelines for SNP call-
ing from bacterial genomes, for example Snippy (https://
github.com/tseemann/snippy), CFSAN SNP Pipeline
[38], NASP [32] and BactSNP [39]. Other solutions are
targeted to routine sequencing and SNP calling such as
SnapperDB [15], which is essentially a database that
stores variant call files from each isolate. This has the
advantage that new strains can be compared to the data-
base and a pairwise distance matrix can be updated
quickly, which allows easy clustering and searching.

Comparison of SNP and cgMLST
It has been shown that SNP and cgMLST (and wgMLST)
analyses are congruent and both approaches are well
suited and commonly applied for food outbreak analyses
[24]. The cgMLST approach has the advantage that it uses
a consistent set of conserved loci and allele definitions for
an entire taxonomic group such as a species. Conversely,
an allele difference between two strains may be explained
by one or several mutations, thus indicating the intrinsic-
ally higher discriminatory power of SNP analyses. In par-
ticular, SNP results allow the application of detailed
evolutionary models for true phylogenetic inference, based
on the core SNP alignment. In practice, SNP analyses may
be applied after defining a potential phylogenetic cluster
after pre-clustering with e.g. cgMLST.

K-mer based approaches
Apart from the commonly applied approaches discussed
here, a number of novel approaches attempt to overcome
the need of an a priori reference and scheme definition.
K-mer based tools split WGS data into nucleotide blocks
of a defined length k. The pair-wise comparison of the k-
mer content between a set of genomes are useful to evalu-
ate their phylogenetic relatedness. K-mer approaches are
often applied in order to investigate the taxonomy of mi-
croorganisms [40] but are also used for sub-clustering, e.g.
serovar prediction, antimicrobial resistance typing or mo-
bile genetic elements identification (see sections below).
An interesting open-source tool is kSNP3 [41], which can

detect SNPs between strains without the need of a refer-
ence genome. To do so it uses a k-mer based approach that
can detect core SNPs between a set of strains and which
can return parsimony, neighbor-joining and maximum-
likelihood trees. kSNP3 was successfully applied for a retro-
perspective outbreak detection [42, 43]. Another k-mer
based approach, PopPUNK (Population Partitioning Using
Nucleotide K-mers), exploits the estimated overlap of core
and accessory genome between a pair of sequences using
the MinHash algorithm [44, 45]. Based on this set of
distance pairs, clusters are created using model fitting,
either using a two-dimensional Gaussian mixture model or
density-based hierarchical clustering (HDBSCAN). Pop-
PUNK was shown to be able to successfully resolve diverse
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bacterial populations into strains (and detect similar clonal
complexes as cgMLST). Another advantage of PopPUNK is
that new genomes can easily be associated to existing clus-
ters without the need to refit the model or recalculate all
pairwise distances. Another novel tool for the analysis of
highly similar sequences, such as those encountered in out-
break investigations is Split Kmer Analysis (SKA) [46]. This
method detects split k-mers (pairs of k-mers which are sep-
arated by a single base) and employs those as markers for
variation between closely-related genomes sequences. SKA
has the advantage of being very rapid and memory-efficient
and preliminary results show its use in identifying clusters
in a retrospective epidemiology study [47].

Phylogenetic tools
Given a core alignment resulting from a SNP analysis, a
number of tools exist for subsequent phylogenetic ana-
lysis. Some fast and simple tools, such as fasttree, are able
to estimate approximate maximum likelihood trees, how-
ever these may have limited accuracy [48]. A maximum
likelihood based tool providing a large number of evolu-
tionary models and bootstrap settings is RAxML (Ran-
domized Axelerated Maximum Likelihood) [49]. Similarly,
IQ-TREE is a fast and effective stochastic algorithm to
infer phylogenetic trees by maximum likelihood [50]. The
Bayesian method MrBayes infers phylogeny using a Mar-
kov chain Monte Carlo method [51]. BEAST is a similar
program based on Bayesian analysis with a focus on time-
scaled trees [52]. Although the Bayesian inference of phy-
logenies is computational expensive, it provides a large
number of options and yields very accurate phylogenies. A
recent evaluation shows that RaxML, as well as IQ-TREE,
produce reasonably accurate trees in acceptable computa-
tional time [53]. Another tool, Gubbins, allows the phylo-
genetic inference of recombinant bacterial species (such as
Campylobacter spp.), while mitigating the effect of hori-
zontal sequence transfer on phylogenetic reconstructions
[54]. To do so, it identifies regions containing elevated
densities of base substitutions and constructs the phyl-
ogeny from the sequence outside of these regions.

Pathotyping of foodborne pathogens using WGS
data
The estimation of the pathogenic potential of a strain is
based on the detection of associated virulence factors
(VFs). These factors can be differentiated in six categories:
i) adherence and colonization factors, ii) Type I to VI
secretion systems, iii) immune evasion factors, iv) toxins,
v) siderophores for iron absorption and vi) invasion genes
[55]. WGS not only allows the detection of known VFs,
but also makes it possible to identify new genes or gene
variants that confer virulence to bacteria. The relatively
high number of hypothetical proteins with unknown func-
tion, resulting from microbial genome annotation, implies

the presence of further virulence factors within this ‘bio-
logical dark matter’. Virulence prediction can be difficult
and often needs to be considered contextually, as illus-
trated by the fact that classical VFs can also sometimes be
identified in non-pathogenic strains [56, 57]. The simple
detection of the presence or the absence of VFs might
therefore not be sufficient due to complex regulative path-
ways and the impact of mutations in regulators, which can
cause an altered virulence as shown for Streptococcus spp.
[58] and for Staphylococcus aureus where more surface
proteins are expressed in the virulent strain [59]. Also, the
loss of regulation genes, as it is the case for Rickettsia pro-
wazekii that causes epidemic typhus in humans, leads to
an increased pathogenicity [60]. Nevertheless, the detec-
tion of VFs is a relevant indication for the pathogenicity of
most bacteria. Several computational approaches were
developed to predict VFs by similarity to known viru-
lence associated patterns. These methods can be dif-
ferentiated into homology based search, detection of
divergent sequence patterns or motifs and machine
learning approaches.
One of the major ways to identify virulence genes in

WGS data is the search for homologs to genes or pro-
teins already known to be VFs. BLAST [61, 62] is one of
the most flexible tools for this task and can be applied
on sequencing reads, assembled genomes or protein
level. Further, open-source tools running via command-
line on nucleotide level include ABRicate (https://github.
com/tseemann/abricate) and AMRFinderPlus [63] that
require assembled genomes, Short Read Sequence Typ-
ing (SRST2) [64] for short read sequences as input and
ARIBA that produces local assemblies after read map-
ping to reference genes [65]. The web-based Virulence-
Finder (https://cge.cbs.dtu.dk/services/VirulenceFinder/)
is an alternative for selected organisms such as Escheri-
chia coli and Staphylococcus spp. with its own curated
database that can also be downloaded and used in com-
bination with open-source tools. There are several data-
bases available that collect virulence associated genes as
well as associated relevant information. Currently, the
Virulence Factor Database (VFDB) [66] contains 1080
virulence factors of which 575 genes are experimentally
verified and 3224 curated virulence factor related genes
from 74 bacteria genera. While VFDB is restricted to
bacteria, Victors, a manually curated database contains
more than 5000 VFs from about 200 pathogens includ-
ing bacterial, viral parasitic and fungal VFs, which also
provides a customized online BLAST against its own
database [67]. The Pathosystems Resource Integration
Center (PATRIC) contains manually curated VFs and in-
tegrates VFs from both the VFDB and Victors for its
data annotation and analysis service [68]. One major
drawback of the homology approach is that only con-
served VFs can be identified, while evolutionary distant
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virulence genes cannot be detected. Often virulence genes
can be found on distinct genetic elements in the bacterial
chromosome, known as pathogenicity islands (PAI) [69,
70]. Interestingly, genes on PAI usually differ in their nu-
cleotide composition and codon usage bias from genes on
the rest of the chromosome. Together with their associ-
ation with mobile genetic elements, tRNA genes and an
accumulation of CRISPR sequences [70] and phage related
sequences, PAIs are suggested to be acquired by horizon-
tal transfer [71]. A large collection of PAIs and PAI candi-
dates is stored in the Pathogenicity Island Database
(PAIDB) [72]. Most bioinformatics tools developed for the
prediction of PAIs rely on composition based methods
that employ the specific properties of genomic islands,
while some compare closely related genomes. It was
shown that combining more than one feature of genomic
islands for prediction purposes produces more reliable re-
sults [73], for which the application of machine learning
methods proved to be useful [74]. A very comprehensive
study that compared many GI prediction tools for their
user friendliness, methodology, accuracy and precision
showed that IslandViewer 4 and GIHunter showed the
highest accuracy and precision [75]. Currently only some
tools can be applied on draft genomes, which might be
overcome by the formation of a reference guided pseudo-
chromosome formation that can be obtained by concaten-
ation of sorted contigs [75]. Assembly of PAIs from short
reads remains a challenge, for the reason that PAI typically
contain repetitive genetic elements such as insertion se-
quences, which cause the assembly process to generate
contig borders at these positions. Additionally these tools
might fail, when the sequence composition of the investi-
gated species is similar to the organism from which the
genomic islands originated or due to normal variation in
sequence composition and occurrence of features typical
for PAIs in the genome.
Several machine learning approaches to predict novel

VFs have been developed. For example, MP3 [76] uses sup-
port vector machines (SVM) and Hidden Markov Model
(HMM) to identify virulence protein candidates in metage-
nomic datasets, even for amino acid fragments typically
resulting from the translation of short read sequencing
data. The application of a strategy, combining sequence
similarity and machine learning, was found to deliver best
results for VF prediction [77], an approach that is applied
by VirulentPred [78]. VirulentPred applies a two stage cas-
cade SVM learning approach on protein fasta sequences
with a background noise reduction step before the classifi-
cation that can be employed via a web portal (http://203.
92.44.117/virulent/index.html). Differently from the previ-
ously described sequence based training, some publicly un-
available approaches rely on classification algorithms
utilizing sequence associated information from biological
repositories such as gene ontology, functional domains and

protein-protein network information [79–81]. A recent re-
view concludes that ML-based virulence prediction
methods frequently perform worse than BLAST-similarity
based approaches [77]. It was shown that the proper defin-
ition of an informed, non-random negative dataset is es-
sential and performances commonly fail to generalize in a
real-world whole-proteome prediction scenario.
Furthermore other machine learning approaches exist

that do not predict VFs as such, but instead predict the
pathogenic potential of novel pathogens. Therefore two dif-
ferent concepts exist that have been implemented in differ-
ent tools: a protein family composition-based [82–84] and a
read based classification [85–87]. The first approach de-
pends on the assembly and annotation of a genome and
considers only coding sequences, the latter method can be
performed on sequencing reads. One advantage of the latter
method is that, even when used with few reads predictions
are robust, - a useful feature for incompletely sequenced ge-
nomes. In any case, the results generated by machine learn-
ing approaches should be carefully analysed, given their
high dependency on the training datasets and the fact that
pathogenicity is not a sufficiently well understood issue [88].

Typing of the mobilome using WGS data
The chromosome represents the genetic backbone of a bac-
terium and comprises the majority of information for the
development of the organism-specific properties. In
addition, bacterial phenotypes can be strongly influenced
by the presence or absence of a diverse set of mobile gen-
etic elements (MGEs), which are usually summarized under
the term mobilome [89, 90]. MGEs are pivotal for the bac-
terial adaptation to prevailing environmental conditions
and genomic evolution as they force the exchange of gen-
etic information between different bacteria [91]. Variable
regions can constitute notifiable amounts of bacterial ge-
nomes and are mainly represented by different types of
MGEs, i.e. insertion sequences (IS), bacteriophage/phage
genomes (prophages), integrative and conjugative elements
(ICEs) as well as plasmids [90, 92]. In the pre-WGS era, the
determination of the biology and genetics of MGEs was la-
borious, time-consuming and often limited by the availabil-
ity of suitable methods. Nowadays, the availability of short-
and long read sequencing techniques for WGS determin-
ation allows deeper insights into bacterial genomics and
provides detailed information of the content and diversity
of MGEs (i.e. plasmids, bacteriophages, transposons) [91].
Generally, DNA sequences associated with MGEs of unre-
lated bacteria can be easily detected as they often exhibit
G +C contents that differ to some extents from that of
their hosts, indicating earlier events of lateral gene transfer
[91]. As MGEs evolve separately from their microbial hosts,
they can exhibit a high diversity that might be strongly in-
fluenced by the route of their transmission, host bacteria
and/or coexistence with other MGEs [91, 93]. Thus,
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medium- and large-size MGEs often comprise a complex
mosaic-like structure exhibiting components (genes, op-
erons, segments) from other elements that might be ances-
trally beneficial for the MGEs or its host bacteria. The
WGS-based entries in public databases impressively illus-
trate the extensive diversity of MGEs, which also hamper
easy and reliable typing of them [89, 94, 95].

Plasmid typing
Plasmids are MGEs of high importance as they can contrib-
ute to the plasticity of the bacterial genomes by transmit-
ting insertion sequences and transposons that may interact
with other prevailing genetic elements (i.e. chromosome,
prophages, and other plasmids) [91, 93]. Additionally, these
elements can also provoke homologous or non-
homologous recombination with the chromosome leading
to an exchange of small or large DNA sequences [96]. Plas-
mids are linear or circular DNA molecules ranging between
1.5 and > 350 kb (megaplasmids) that sometimes integrate
into the bacterial chromosome, but often replicate inde-
pendently as extrachromosomal elements [97]. As they
often carry genes that are beneficial for the survival of the
host bacteria (i.e. metabolic- & virulence factors, antibiotic
and heavy metal resistances, genes for environmental
adaptability and persistence) they are important elements
for bacterial adaptation [90, 91, 97]. Beside such factors,
plasmids can also exhibit genes that are essential for their
spread [98]. Traditionally, they were attributed to three dif-
ferent types based on their transmissibility: i) self-
transmissible plasmids, also designated as conjugative plas-
mids, comprise all necessary genetic information to develop
a mating pair formation (MPF) complex and DNA transfer
replication apparatus, which are required for conjugative
transfer; ii) mobilizable plasmids are not self-transmissible
and use a MPF complex of another genetic element, while
iii), the third type is represented by plasmids that are nei-
ther conjugative nor mobilizable [98, 99]. Due to their par-
ticular role in exchanging genetic material (horizontal gene
transfer), great efforts have been made to develop reliable
typing techniques for plasmids. Historically, plasmid-typing
was mainly based on incompatibility (Inc) studies of plas-
mids with other plasmids in the same cell, subsequent re-
striction profiling and/or DNA-DNA hybridization. The
large diversity of plasmid genomes required the develop-
ment of a reliable and rapid typing system based on DNA-
DNA hybridization or PCR amplification of specific repli-
con DNA units that are essential for autonomously replica-
tion (Rep) within a host. The previously described Inc- and
Rep-typing procedures both rely on replication factors and
provide further insights into the potential impact of the
plasmid (i.e. associated with virulence and/or antimicrobial
resistance determinants) [100].
There are only some tools for in silico typing of plasmids

from WGS data currently available. The manuscript of

Orlek and colleagues (2017) provides a comprehensive
overview of available tools and strategies for plasmid identi-
fication [100] of which only some are addressed below. One
of the most popular tools, PlasmidFinder [96], enables the
detection of plasmid replicons and assigns the requested
plasmids to the respective Inc. group of the previously used
Inc./Rep-typing schemes [100]. PlasmidFinder further pro-
vides information on the similarity values of the requested
sequence to a closely related reference. Users that are inter-
ested in a more thorough typing of plasmids can further
use the pMLST tool that provides plasmid MLST allele se-
quence and profile data from public databases for molecu-
lar typing (https://pubmlst.org). PlasmidFinder is well
established for in silico analysis of plasmids from Entero-
bacteriaceae and some Gram-positive bacteria, but lacks in-
formation on plasmids from a broad range of other bacteria
[96]. PLACNETw, another tool for plasmid reconstruction
from WGS data, uses information about scaffold links and
coverage of the WGS assembly, nucleotide comparison to
reference plasmids, and plasmid features (i.e. replication ini-
tiator proteins) for in silico prediction. This tool also pro-
vides additional features for plasmid visualization and
further downstream analysis [101]. Plasmid Profiler is a
pipeline that performs comparative plasmid content ana-
lysis and provides a heatmap of the plasmid content in
WGS data. For plasmid prediction, the pipeline initially
identifies plasmids of the reference database that are repre-
sented in the reads using the K-mer Analysis Toolkit
(KAT) and develops individual isolate plasmid databases.
Subsequent analysis is conducted using SRST2 to identify
plasmid matches from the individual isolate plasmid data-
bases. Finally, the BLAST suite is used to identify the in-
compatibility group and specific genes of interest on the
plasmid sequences. Thereafter the identified matches are
scored on a combined measure of maximized coverage and
minimized sequence divergence. The program provides a
static and an interactive heatmap as well as a tabular sum-
mary of the results. Beside WGS data the user further needs
a reference plasmid database and replicon/gene of interest
database for comparative analysis [102]. PlasFlow is a
scripts-based plasmid sequence prediction tool for metage-
nomic data that relies on neural network models. The
models were trained on full genome and plasmid sequences
and are thus able to differentiate between chromosomes
and plasmids. Beside this information, the tool also pro-
vides thresholds that allow for an assessment of the predic-
tion quality [103].
There are also some tool independent options for the

prediction of plasmid-based sequence contigs in WGS
data [100]. The first prediction option is based on the
copy number of the plasmids. Usually, small- and
medium-size plasmids provide a higher copy number
per bacteria than the chromosome [104]. Thus sequence
contigs that are based on small or medium-sized plasmid
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usually yield higher sequence coverages than chromo-
somal contigs. Given that large plasmids often exhibit
similar copy numbers as the chromosome this option
might be only suitable for reliable prediction of small and
medium-sized plasmids. The second option for plasmid
prediction is based on the predominantly circular struc-
ture of plasmid molecules. Thus, DNA contigs exhibiting
terminal redundant sequences might represent plasmid
contigs. However, a lot of DNA molecules, especially
transposons and insertion sequences also provide DNA
fragments with terminal repeats leading to false-positive
plasmid predictions without further analysis.

Phage typing
The content and composition of prophages in bacteria is
of particular importance for genome diversification, as
the repertoire of bacteriophage (phage) sequences can
represent a notifiable amount of the variable gene con-
tent among different bacterial isolates. The great major-
ity of the frequently sequenced bacteria are lysogens and
therefore represent a huge source of prophages [105,
106]. Prophages are genomes of temperate phages that
have infected a susceptible host bacterium, were they ei-
ther integrate into the chromosome or exist as circular
or linear plasmids. During the lysogenic lifestyle, pro-
phages coexist with their hosts in a latent form without
producing virus particles. Specific cellular stress signals
(i.e. temperature, antibiotics, UV radiation) can activate
the lytic lifestyle, in which virus propagation is initiated
and cellular lysis occurs. As the genomes of temperate
phages usually exhibit additional non-essential genetic
information, prophages often provide genes that poten-
tially encode beneficial components for the host (i.e.
gene products involved in a number of bacterial cellular
processes, antibiotic resistance, stress response, and viru-
lence) [105, 106]. For most of the temperate phages
functional information on their accessory genome is
widely unknown, as only some of the identified genes
encode products of predictable functions. Furthermore,
classification of bacterial viruses is often challenging as
bacteriophages belong to the most common and hetero-
geneous entities of the biosphere. It has been estimated
that more bacteriophages (> 1031) appear on the earth
than bacteria (> 1029) [107]. In the past, phages were
mainly classified on the basis of the morphology of their
virion particles as well as their DNA structure. Now-
adays, the genetic structure and organization of their ge-
nomes are also pivotal for their classification [108].
For the prediction of prophage sequences within WGS

and metagenomics data from bacterial genomes, several
tools have been developed. A comprehensive summary on
available tools and their properties was recently published
by Song et al., 2019 [109]. Most of the currently available
programs (i.e. Prophage Hunter, MARVEL, PHAST or

PHASTER, MetaPhinder, VirSorter, PhiSpy) use similarity
matching with entries of the phage/prophage/virus data-
bases and are based on specific phage genome features
(i.e. components for lysis, integration, replication, lifestyle
regulation, DNA packaging, virion assembly). Some of
them, e.g. Prophage Hunter, further use machine learning
classifier to assess the status of the prophages. For some of
the tools additional functions are available (i.e. annotation
of gene products or the prediction of the attachment site),
which might be advantageous for the assessment of the
predicted prophage sequences. Specifically the prediction
whether a prophage might still be active or only represents
a remnant DNA artefact (cryptic prophage that was inacti-
vated due to bacterial defense systems or mutational
decay) is important in order to assess the impact and its
potential for further spreading [105, 106]. Overall, many
of the tools provide a good performance in detecting pro-
phage sequences in bacterial WGS or metagenomics (i.e.
MARVEL) datasets and can often be used by researchers
without programming skills (i.e. Prophage Hunter,
PHAST/PHASTER, VirSorter). However, in silico assess-
ment of prophages might still be challenging, especially if
bacterial WGS data of underrepresented organisms is ana-
lysed and the used phage/prophage/virus databases lack
data on their bacterial viruses [109]. Due to the huge
number of prophages and their high diversity further ef-
forts are needed for reliable prophage prediction and ac-
tivity assessment as the identification of active prophages
is crucial for studying co-evolution of phage and bacteria
[105, 106].

Transposable elements
Transposable elements are integral parts of bacteria and
consist of insertion sequences and transposons. While
insertion sequences are simply structured, short DNA el-
ements (< 5 kb with usually 1–2 coding sequences) only
comprising genes that facilitate their transmission, trans-
posons are larger (> 5 kb) and highly variable in their
gene content. Beside genes for movement, transposons
are more complex versions of insertion elements that
further encode additional genetic information (i.e. metal
and antibiotic resistance determinants) that might be
beneficial for the survival or the adaptation of the bac-
teria. Usually, transposable elements exhibit highly vari-
able frequencies of transposition ranging between 10
and 7 to 10–2 per generation. For movement, the DNA
of the target sequence and of the ends of the transposon
is cut. Thereafter, the ends of the transposon and target
DNA are joined and replication takes place either by a
replicative or non-replicative mechanism, in which the
complete transposon or only short fragments at the end
of the insertion site are replicated, respectively. Insertion
elements usually exhibit short terminal inverted repeats
at both ends, which provide target sites for homologous
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recombination. IS elements can cause rearrangement or
deletion and contribute to the plasticity of the genome,
bacterial adaptation and genome evolution.
A diverse set of tools for IS and/or transposon prediction

is available. The publication of Bergman and Quesneville
[110] provides a good overview on available tools and their
prediction strategies. A comprehensive actively curated
summary of IS prediction tools is also available on the
homepage of the Bergman laboratory (http://bergmanlab.
genetics.uga.edu/). In general, prediction tools for trans-
posable elements follow a broad range of approaches that
can be based on de novo repeat detection, sequence hom-
ologies, the genetic structure and/or comparative analysis.
Tools (i.e. Reputer, RepeatMatch, RepeatFinder, PILER,
ReAS) using de novo repeat detection are typically used
for the identification of novel transposable elements. This
approach relies on the identification of DNA repetitions in
assembled data and is therefore dependent on sequence
quality and the used assembling algorithm. Nevertheless,
differentiation between repeats from transposable ele-
ments and other repetitive sequences is still a challenge.
Tools that are based on the homology-matching ap-
proach for the detection of similarities to coding sequences
of known transposable elements are thus biased and
dependent on the current level of knowledge. Further-
more, these tools also fail to identify transposable elements
without coding sequences. Tools predicting transposable
elements on the basis of the genetic structure (i.e. LTR_
STRUC, SMaRTFinder) rely on identification of repeat re-
gions. The approach has been mostly used for the predic-
tion of long terminal repeat retrotransposons. Other
approaches rely on comparative genomic-based methods
[111], that search for large insertions in multiple align-
ments that were created by transpositions. However,
methods using this approach are dependent on the activity
of the transposable elements. Therefore, without any
transposition (i.e. if ancestral transposable elements are
present) the tools will not detect transposable elements.
As all of these approaches rely on important features of
transposable elements, best practice will be observed with
tools implementing more than one of them [110].

Typing of antimicrobial resistance
Naturally, antimicrobials are produced as secondary me-
tabolites by bacteria and fungi from soil and marine hab-
itats to inhibit the growth of other organisms and thus
to gain a competitive advantage [112]. When cells are
able to grow in presence of an antibiotic, they are classi-
fied as antimicrobial resistant. Antimicrobial Resistance
(AMR) is a natural phenomenon, as old as the antibiotic
substances themselves and many bacteria co-existing
with antimicrobial-producers have developed intrinsic
resistant mechanisms [113]. In addition, AMR can also
be acquired by formerly susceptible bacteria. History has

shown that shortly after the introduction of a certain
antimicrobial in human or veterinary medicine, resistant
bacterial clones emerged and spread in human and ani-
mal populations. This phenomenon was attributed to
the selection pressure caused by antimicrobial usage
[114]. Development of AMR in human pathogens is ac-
companied by increasing mortality rates and economic
costs and represents a major public health burden in the
twenty-first century [115]. Generally, AMR can occur
through various mechanisms including: i) degradation or
enzymatic modification of the antimicrobial, ii) overpro-
duction, protection or modification of the antimicrobial
target, iii) antimicrobial efflux and iv) change in cell per-
meability resulting in restricted access to the target site
[116–118]. Formerly susceptible microorganisms can ac-
quire AMR either by chromosomal point mutations,
through overexpression or duplication of antimicrobial
target genes, or through acquisition of antibiotic resist-
ance determinants by horizontal gene transfer [118,
119].
To measure AMR in bacterial isolates conventional

phenotypic screening can be performed to determine the
concentration of a certain antimicrobial necessary to
prevent bacterial growth (minimum inhibitory concen-
tration (MIC) measurement) [120]. Commercial and
standardized 96-well broth microdilution panels belong
to the most widely used methods to test bacterial growth
in different antibiotics and antibiotic concentrations
[121]. The determined MIC values are compared to clin-
ical breakpoints or epidemiological cut-off values to de-
cide whether a bacterial isolate is susceptible or resistant
to a certain antibiotic [120].
To closely investigate the mechanism underlying

AMR, a genotypic characterization of isolates is neces-
sary. Nowadays, AMR genes and point mutations associ-
ated with AMR can be identified in WGS data [120].
When working with short-read sequencing data, AMR
genes can be detected either using assembly-based or
read-based approaches [118]. In the assembly-based ap-
proach, short-read sequencing reads are first assembled
into contigs and AMR genes are identified using
BLASTN-based tools comparing the derived draft ge-
nomes to AMR reference gene databases [118, 120, 121].
Examples for assembly-based approaches include the
ResFinder tool (now including PointFinder) searching
the ResFinder database and the Resistance Gene Identi-
fier (RGI) searching the Comprehensive Antibiotic Re-
sistance Database (CARD) [118, 122, 123]. Both tools
are able to identify acquired resistance genes as well as
point mutations and are available as web-based or stan-
dalone versions [118]. In read-based approaches, short-
reads are either aligned to reference databases using
pairwise alignment tools, as implemented by SRST2, or
split into shorter k-mers which are subsequently mapped
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to a k-mer database obtained from reference sequences,
as implemented in KmerResistance or the latest ResFin-
der 3.2 version (when submitting raw reads) [64, 118,
124]. These methods have in common that they can de-
tect acquired antimicrobial resistance genes, but are not
able to identify point mutations associated with anti-
microbial resistance. Moreover, information about regu-
latory elements located upstream or downstream of
resistance genes are not provided when using read-based
approaches [118]. Although these methods are less com-
putationally demanding as assemblies are not required,
they provide an advantage when dealing with metage-
nomics samples, as resistance genes in less abundant or-
ganisms from complex samples can be identified despite
low coverage [118]. For reliable resistance gene identifi-
cation, resistance gene databases have to be continuously
updated. One disadvantage of common AMR databases
is, that novel or remote homologous AMR genes from
less well studied bacteria might be missed, for the reason
that these databases are heavily biased towards easy-to-
cultivate human pathogens [118]. One approach to over-
come this bias is, to use databases which include anti-
biotic resistance determinants from metagenomics
samples, e.g. ResFinderFG [125]. Another approach is to
use Hidden Markov model-based databases such as
Resfams, which were developed to identify potential
AMR genes with the same function, but low sequence
identity to known AMR genes [118, 126].
To predict the resistance phenotype (MIC values) from

genotypic data, rules-based or machine learning ap-
proaches might be used [127, 128]. Rules-based algo-
rithms predict AMR phenotypes using curated reference
sets of genes and point mutations involved in resistance,
whereas machine-learning algorithms use a model built
from a training set comprised of WGS and phenotypic
data of resistant isolates [127, 128]. Rules-based methods
can be used, when the factors contributing to AMR are
well known. When information about the underlying
mechanism of resistance is insufficient, prediction of MIC
values based on reference-free machine learning may be
the better approach. Nguyen et al. [127] developed ex-
treme gradient boosting (XGBoost)-based machine learn-
ing models for the prediction of MICs for 15 antibiotics in
non-typhoidal Salmonella strains from whole-genome se-
quencing data. Nguyen and colleagues used datasets with
available WGS and phenotypic AMR data to train their
models, which were subsequently able to predict MICs of
other Salmonella strains without information about the
resistance phenotype or genes involved in molecular re-
sistance mechanisms. This reference-free approach for
predicting MIC from whole-genome sequencing data can
be applied to other pathogens relevant for surveillance or
clinical diagnostics and might even be used to detect new
genomic features involved in AMR [127]. However,

complete replacement of phenotypic AMR measurement
by molecular AMR prediction approaches is not advised,
given that bacterial strains continue to evolve and new re-
sistance mechanisms are going to emerge, which may be
overlooked as they are not represented in AMR databases
or in the datasets used to train machine learning models.
Therefore, phenotypic testing of a representative genomic
diversity of strains needs to be maintained to ensure that
genotypic AMR results do not diverge from the true AMR
phenotype over time [129].

Serotyping prediction
Subtypes within different genus of food-born pathogenic
bacteria can be differentiated by their highly variable
antigenic surface structures. The presence of an antigen
can be detected through a series of immunological tests,
in which cells are mixed with specific antisera to induce
agglutination. Derived from these serological tests sub-
types are commonly known as serovars or serotypes.
The distinction of foodborne bacteria into serovars,
starting from the 1930s has proven extremely useful for
the reason that characteristics such as host specificity,
virulence and pathogenicity usually correlate well with
serovar assignments. Consequently, serovar assignment
has provided scientists, public health experts and the
general public with an effective terminology and a per-
quisite for monitoring and surveillance schemes. To
date, about 2600 different Salmonella serovars have been
identified [130]. Within Escherichia coli there are ap-
proximately 190 known serovars [131], while Shigella
spp. are differentiated in 54 serovars [132]. There are 47
recognized serovars of Campylobacter jejuni [133] and
13 serovars for Listeria monocytogenes [134]. In general,
serotyping is based on the somatic O antigen, a cell sur-
face protein and the H antigen, which forms part of the
flagella (for serotyping of Shigella only the O antigen is
of consideration). Serotyping of C. jejuni is slightly dif-
ferent and is based on the capsule polysaccharide (CPS)
[133]. Each known antigen is assigned a number and let-
ter code, which are then combined into a seroformula
according to an established scheme, such as the White-
Kauffmann-Le Minor scheme for Salmonella [9], the
Shigatoxin-producing E. coli (STEC) scheme [135] and
the Penner scheme for C. jejuni [136].
Although traditional laboratory serotyping does not re-

quire expensive equipment, it is time- and resource con-
suming, as well as labour-intensive and can be limited
by the non-expression of surface antigens. To overcome
these drawbacks, several in silico methods have been de-
veloped in recent years, which analyse sequencing data
derived from WGS to predict the serovar of an isolate.
An overview of currently available tools for in silico ser-
ovar prediction is shown in Table 3.
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Different strategies can be applied to infer serovar predic-
tions from sequencing data. The most common is the de-
tection of sequence differences that cause variations in
either the O or the H antigen. In general, tools that follow
this approach, such as SeqSero [137] and SerotypeFinder
[141], implement a mapping alignment, which aligns the
obtained sequencing reads to a reference database of anti-
gen allele sequences and then assign the antigenic formula
and the serovar name based on the best scoring alignments.
It is also possible to break reads into k-mers, which are
then compared to the frequency of unique k-mers of sero-
type determinants as implemented in SeqSero2 [138]. A dif-
ficulty of these approaches is that usually there is no single
gene encoding the antigens. For example the O antigen of
Salmonella is determined by the wzx flippase gene the wzy
polymerase gene as well as additional genes from the rfb
cluster. Another issue is that some closely related serovars
share the same antigenic seroformula, but feature minor
differences in their O antigenic factors, such as S. enterica
serovar Kottbus and S. enterica serovar Ferruch.
Another approach for in silico serovar prediction is to

infer serovars from multi-locus sequence types, e.g. the Sal-
monella 7-gene Multi-Locus Sequence Typing (MLST)
scheme [9], as implemented in MOST [140]. Sequence

types have been shown to correlate well with serovars, al-
though one weakness of this approach is that sometimes
more than one serovar is associated with a sequence type.
Furthermore serovar prediction fails when an isolate fea-
tures a novel sequence type, for which no associated sero-
var is available in the database. A continuation of this
strategy is the determination of serovar predictions from
cgMLST, as implemented in SISTR [139]. In this method
the cgMLST of an isolate is determined and a pairwise dis-
tance matrix between any two genomes is computed. From
the distance matrix, isolates are hierarchically clustered and
the serovar is predicted based on the dominant serovar of
the respective cluster. This whole genome based method
refines serovar predictions by considering the phylogenetic
context and is especially useful when draft genome assem-
blies contain incomplete antigenic regions.
In addition to these methods, several studies have further

investigated the utility of lineage-specific gene markers for
the identification of polyphyletic serovars [142–144]. How-
ever, we are not aware of any currently publicly available
program that implements the findings from these studies.
Furthermore, a recently published package for R explores
the possibility to predict serovars of Salmonella enterica
based on the sequence of CRISPR spacer pairs [145].

Table 3 List of different tools for in silico serovar prediction

Tool
(Reference)

Species Method Source

SeqSero [137] Salmonella spp. mapping of raw reads to database of O and H
antigen alleles

command line: https://github.com/denglab/SeqSero

Web tool: http://denglab.info/SeqSero

SeqSero2 [138] Salmonella spp. similar SeqSero, additional performs rapid serotype
prediction based on unique k-mers of serotype
determinants

command line: https://github.com/denglab/SeqSero2

Salmonella
TypeFinder

Salmonella spp. in addition to running SeqSero, determines 7 gene
MLST and infers serovar from sequence type according
to Enterobase database

Web tool: https://cge.cbs.dtu.dk/services/
SalmonellaTypeFinder/

SISTR [139] Salmonella spp. mapping of database of O and H antigen alleles against
genome assembly, additionally, determines cgMLST and
infers serovar from cgMLST clustering result

command line: https://github.com/phac-nml/SISTR_cmd

Web tool: https://lfz.corefacility.ca/sistr-app/

MOST [140] Salmonella spp. determines 7-gene MLST and reports number of
respective serovar – ST matches from the PHE/Achtmann
database

command line: https://github.com/phe-bioinformatics/
MOST

Serotype
Finder [141]

E. coli mapping of raw reads to database of O and H antigen
alleles, or mapping of antigen alleles against genome
assembly

command line: https://github.com/Papos92/ecoli_
serotyper

Web tool: https://cge.cbs.dtu.dk/services/SerotypeFinder/

ECTyper E. coli Information not available command line: https://github.com/phac-nml/ecoli_
serotyping

EBEis from the
Enterobase
Tool Kit

E. coli Shigella
spp.

mapping of database of O and H antigen alleles
against genome assembly

command line: https://github.com/zheminzhou/
EToKi#ebeis%2D%2D-in-silico-serotype-prediction-for-
escherichia-coli%2D%2Dshigella-spp

Seq_typing E. coli mapping of raw reads to database of O and H antigen
alleles, or mapping of antigen alleles against genome
assembly

command line: https://github.com/B-UMMI/seq_typing

LisSero [134] Listeria
monocytogenes

mapping of database of 5 DNA regions (lmo1118,
lmo0737, ORF2110, ORF2819, prs) against genome
assembly

command line: https://github.com/MDU-PHL/LisSero
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Benchmarking studies and comparative performance as-
sessment of in silico serotyping tools attest a medium to
high correlation with conventional serotyping (70–95%
agreement) [146–148], which is likely to improve further in
the future. It is important to note that all tools, regardless
of their respective approach rely heavily on the underlying
databases. Most tools do not update reference databases,
rendering prediction results less accurate for novel and / or
rare serovars. Furthermore the quality of the sequencing
data can have an impact on robust prediction, especially if
tools require assembled draft genomes as input. Since there
is great variety in assembly algorithms, the chosen algo-
rithm may also have an effect on serovar predictions [147].
The availability of online web interfaces for different

tools (for example SISTR, SeqSero, SalmonellaTypeFinder,
SerotypeFinder), make in silico serotyping tools easily and
widely accessible. Despite their advantages they are not
suitable for high-throughput, independent, reliable and re-
producible results generation. Only their command-line
program versions can be integrated into in-house bacterial
characterization analysis pipelines, which allow rapid, effi-
cient, customized and controlled bioinformatics analysis
of WGS data on a day-to-day basis.
Overall, in silico serotyping is a rapid, efficient, cheap

and reproducible analysis process. However, further
benchmarking and comparison studies are needed to re-
liable evaluate the available tools. Furthermore, continu-
ously updated curated and extensive databases, as well
as standardization of serovar names are needed for
accurate and comparable in silico serovar prediction.

WGS analysis platforms
As discussed previously, a great variety of methods and
tools is available to analyse and characterize bacterial
pathogens. Many of these tools are implemented for Unix
environments and require at least some bioinformatics
expertise for usage. To enable epidemiologists,

microbiologists and other researchers to interpret the bio-
logical coherencies, there is a variety of online platforms
including commercial software available for collection,
analysis and visualization of sequencing data [149, 150].
These platforms generally start their analyses from raw se-
quencing data or assemblies and rely on different ap-
proaches for organization of metadata, sequencing data,
and various analysis steps. The major distinction of all
presented platforms are, whether they use a SNP or an al-
lele calling (gene-by-gene) approach for hierarchical clus-
tering to calculate phylogenies from WGS data (compare
Table 4). Most platforms implementing cgMLST provide
their own cgMLST schemes or host a collection of exist-
ing ones. While the choice of scheme is vital for the com-
parability of results, the number of well tested schemes for
non-model organisms is limited. A list of currently avail-
able schemes is given in Table 2. If no suitable scheme is
available, users can generate their own scheme, by using
tools such as Ridom SeqSphere+ [157] or chewBBACA
[158], always provided that a sufficient number of refer-
ence genomes is available.
Platforms can also be differentiated by whether they

are web-based or run in local instances. While web-
based tools are often free for use and do not require
computational power from the user, they often demand
users to deposit the analyzed data in public repositories.
This is especially challenging for hospital laboratories
and private sector companies, who are often hesitant
to share their data publically. However, it is a neces-
sity to keep databases up to date in order to be able
to detect potential links between isolates from differ-
ent sources [159].
All platforms have their own unique set of pipelines

and tools for the analysis of WGS of different bacterial
species. Fundamental questions for many real-world sce-
narios include analyses such as AMR detection, patho-
typing and virulence gene detection, serotyping and

Table 4 Key characteristics of selected platforms

Platform Reference Typing approach Central instance/
Local instance

Commercial (C)/ Academic (A)

BIGSdb [151] wg/cgMLST Both possible A

Bionumerics http://www.applied-maths.com/applications/wgmlst wg/cgMLST and SNP Both possible C

CGE [152] cgMLST and SNP Cloud A

COMPARE [153] cgMLST and SNP Cloud A

Enterobase [16] wg/cgMLST and SNP Cloud A

INNUENDO [154] wg/cgMLST Local A

IRIDA [155] wg/cgMLST and SNP Local A

NCBI Pathogens [156] wg/cgMLST and SNP Cloud A

PathogenWatch https://pathogen.watch cgMLST Cloud A

PATRIC [68, 150] SNP Cloud A

SeqSphere+ https://www.ridom.de/seqsphere/ wg/cgMLST Local C
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phylogenomics. Each of these features is presented for
the selected tools in Fig. 1. Table 4 provides an over-
view of the most widely used platforms and their speci-
fications with regard to the functionality described
previously. A more detailed overview of some of these
tools has been composed in an EFSA/ECDC technical
report [149].
The major advantage of applying online platforms or

commercial software tools for WGS analyses is that
usage requires no or only limited bioinformatics know-
ledge. Since users often have no insight regarding the
underlying algorithms and parameters of the tools, this
might lead to unreliable analyses and in last conse-
quence to misinterpretation of the result data. Therefore,
training of users and well-written documentation of plat-
forms and tools is a vital prerequisite for effective usage
of these platforms.

Future directions
Many typing tools and databases have been developed to
allow the meaningful analyses of WGS data for a variety
of investigations. Sequencing technologies are still rap-
idly evolving, generating more accurate data, for less
money with greater user-friendliness. This leads to the
technology being implemented on a broad, worldwide
scale. The current dynamic in the development of new
techniques and analysis tools and the transformation of
these into routine disease surveillance, will require a
great amount of standardization to ensure the compar-
ability of WGS data and results between laboratories.
One major issue is the harmonized assignment of new
sequence types according to cgMLST/wgMLST, which
theoretically would require a large centrally organized
curated database. One workaround solution could be the
implementation of allele hashing instead of the use of
simple allele numbers, since hash-tagging allows for the
decentralized allocation of sequencing types. Consider-
ing the great variety of typing tools, as well as their con-
tinuous development, standardization may not be a
viable option. Instead, the careful validation of those
tools with well-documented data test sets could ensure
that the results are “truth”. By this approach, WGS data
of bacterial isolates might not be directly comparable,
but interpretation of result data and derived conclusions
would be overall similar. Standards should be developed
for the internationally accepted validation of typing tools
[160] and benchmarking data sets for validation shall be
extended. This would make the need for a specific vali-
dated cgMLST nomenclature system for a particular
bacterial species obsolete. The databases underlying bio-
informatics tools, e.g. for serotyping or virulence typing,
need to be professionally curated to avoid erroneous re-
sults. This demands human and hardware resources and
needs to be addressed to decision makers on a global

scale e.g. FAO, WHO, or OECD. International biological
repository institutions for sequences such as ENA (Eur-
ope), NCBI (U.S.A.) and DDBJ (Japan) would be well
suited to host such tools. The NCBI Pathogen Detection
Pipeline [161] is a promising development for a stan-
dardized analysis pipeline, especially if shared with a
broader scientific community and which could be ex-
panded to include a variety of tools for analyzing WGS
data (e.g. cgMLST, serotyping, virulence).
SNP-based mapping approaches are problematic for the

comparisons of genetically highly diverse bacteria, such as
Campylobacter spp. and Helicobacter pylori due to large
scale fluctuations disrupting the clonality of the species.
For those pathogens, typing approaches could be more ef-
fective in describing the evolutionary relationships be-
tween these diverse microorganisms. Although reference-
free assembly followed by gene-by-gene approaches are
more robust for horizontal gene transfer events misinter-
pretation is still possible. Better visualization tools for the
examination of the phylogenetic, geospatial and temporal
distribution of isolates on a global as well local scale are
urgently needed. The visualization of phylogenomic data
in combination with metadata is a crucial step in under-
standing the complex relationships between isolates,
informing further actions and decisions. A plain data
collection in regard to surveillance of pathogens is not suf-
ficient. Some projects such as Microreact (https://micro-
react.org) or NextStrain (https://nextstrain.org/) have
developed tools for this purpose, but these need to be
more broadly accessible and applicable for official labora-
tories involved in routine surveillance. We believe that
visualization of typing results could be much improved,
leading to a deepened understanding of the evolution of
pathogens and disease outbreaks.
Beside good visualizations, successful interpretation of

typing data requires equal input and expertise from mo-
lecular biologists, epidemiologists and bioinformaticians.
The importance of all three fields should be reflected in
team structures, education and research programs. In fu-
ture, most phenotypical and PCR based methods can be
substituted with in silico WGS analyses. Others, such as
traditional phenotypic antimicrobial resistance assays will
continue to be of high relevance since there is still an insuf-
ficient understanding of the physiological links between
geno- and phenotype. The decision which types of analysis
can be switched from traditional microbial testing to WGS
will heavily depend on evaluation and validation studies, as
well as on a general increase of knowledge and understand-
ing of WGS data analysis within the community. Scientists
who analyse WGS data currently use software which are
built on mechanistic model-based approaches for
comparative genomics and genome characterization. Re-
cently however, bioinformaticians have taken advantage of
artificial intelligence and its sub-discipline machine learning

Uelze et al. One Health Outlook             (2020) 2:3 Page 14 of 19

https://microreact.org
https://microreact.org
https://nextstrain.org/


[162]. Whilst mechanistic model-based systems are based
on simplified mathematical formulations considering input-
output relationships, machine learning makes predictions
on large-scale datasets that bypass the need for causality
[163]. In the future, typing approaches could tremendously
benefit from this trend, with the potential to refine these
methods with an unprecedented resolution [164].

Conclusions
Whole genome sequencing technologies have pushed
the development of advanced typing approaches for bac-
terial genome comparisons, which are primarily based
on SNP and gene-by-gene analyses. Both methods pro-
vide often similar conclusions, but may vary in their
resolution and suitability for different species and epi-
demiological cases. The construction and interpretation
of phylogenetic trees derived from these data, makes it
possible to identify transmission events and to under-
stand the dynamic of outbreaks, which is still a chal-
lenge. As more data will be generated and as more
documented examples of genetic relationships in terms
of spatial and temporal variations will be described, the
better we will understand the evolution of bacterial spe-
cies and their variants in human, animal, food and the
environment. The high resolution of WGS nullifies sim-
ple thresholds of relatedness as applied for classical mo-
lecular typing methods. We believe that the public and
animal health, food safety and environmental scientific
disciplines should extend their collaboration to benefit
from this immense opportunity to build more efficient
One Health tools and databases. Furthermore new ap-
proaches such as machine learning for robust phylotyp-
ing and for the interpretation of WGS data need to be
explored and implemented where their usefulness is
demonstrated. The development of advanced open-
source and easy-to-use typing tools will play a central
role in achieving this goal. However, a successful routine
global surveillance requires the consolidation of the de-
veloped tools as a perquisite for the setting of inter-
national standards.
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